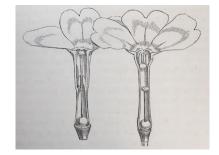


University of Tsukuba


41th PTraD Research Seminar

7th T-PIRC Research Seminar

Date and Time: 2018/5/25 (Fri) 13:30 – 14:30 Place: Gene Research Center, Seminar Room (211)

Primula genomics: new insights on the heterostyly supergene

Jonathan Cocker

Earlham Institute (Norwich, UK) (Postdoctoral researcher)

Floral heteromorphy (heterostyly) in Primula has been studied for over 150 years. Primula vulgaris (primrose) plants produce self-incompatible pin- or thrum-form flowers, that present anthers and stigma at reciprocal heights. Darwin concluded that this arrangement promotes insect-mediated cross-pollination; later studies revealed control by a cluster of tightly-linked genes, or supergene, known as the *S* (*Style length*) locus. This phenomenon is thought to have evolved independently in over 28 angiosperm families. Occasionally, plants with self-fertile homostyle flowers occur, displaying anthers and stigma at equal heights; these were predicted to arise through rare recombination events in heterozygous thrum plants. We identified the *Primula vulgaris S* locus and showed it is absent from pin plants, and hemizygous in thrum plants (thrum-specific), rather than heterozygous as previously assumed; homostyles result from mutation of S locus genes, not recombination as predicted. Our 411 Mb *P. vulgaris* genome assembly covers ~87% of the genome, and is generated from an inbred long homostyle plant with high genomewide homozygosity. This assembly facilitated our identification of the S locus genes and surrounding genomic regions. Using phylogenetic analysis we estimate the origin of the supergene at 51.7 MYA. Further studies indicate conserved hemizygous genetic architecture for the *S* locus in multiple *Primula* species. These findings reveal novel insight into the structure and origin of the Primula S locus, whilst providing genomic resources for future studies on the evolution and function of heterostyly.

Facilitator : GRC Mai Tsuda (tsuda.mai.fu@u.tsukuba.ac.jp)